Numerical Advection Operator
We have two ways to represent phenomena that occur across space such as advection: through symbolically-defined partial differential equation systems, which will be covered elsewhere in documentation, and through numerically-implemented algorithms. This is an example of the latter. (Currently, symbolically defined PDEs are too slow to be used in large-scale simulations.)
To demonstrate how it works, let's first set up our environment:
using EnvironmentalTransport
using EarthSciMLBase, EarthSciData
using ModelingToolkit, DifferentialEquations
using ProgressLogging
using ModelingToolkit: t, D
using DynamicQuantities
using Distributions, LinearAlgebra
using Dates
using NCDatasets, Plots
Emissions
Next, let's set up an emissions scenario to advect. We'll make the emissions start at the beginning of the simulation and then taper off:
starttime = DateTime(2022, 5, 1)
endtime = DateTime(2022, 5, 10)
struct EmissionsCoupler sys end
function emissions(μ_lon, μ_lat, σ)
@parameters(
lon=-97.0, [unit=u"rad"],
lat=30.0, [unit=u"rad"],
lev=1.0,
)
@variables c(t) = 0.0 [unit=u"kg"]
@constants v_emis = 50.0 [unit=u"kg/s"]
@constants t_unit = 1.0 [unit=u"s"] # Needed so that arguments to `pdf` are unitless.
dist = MvNormal([datetime2unix(starttime), μ_lon, μ_lat, 1],
Diagonal(map(abs2, [3600.0*24*3, σ, σ, 1])))
ODESystem([D(c) ~ pdf(dist, [t/t_unit, lon, lat, lev]) * v_emis],
t, name = :emissions, metadata=Dict(:coupletype => EmissionsCoupler))
end
function EarthSciMLBase.couple2(e::EmissionsCoupler, g::EarthSciData.GEOSFPCoupler)
e, g = e.sys, g.sys
e = param_to_var(e, :lat, :lon, :lev)
ConnectorSystem([e.lat ~ g.lat, e.lon ~ g.lon, e.lev ~ g.lev], e, g)
end
emis = emissions(deg2rad(-97.0), deg2rad(40.0), deg2rad(1))
\[ \begin{align} \frac{\mathrm{d} c\left( t \right)}{\mathrm{d}t} &= \mathtt{v\_emis} e^{-8.0447 - \frac{1}{2} \left( \left|-1 + \mathtt{lev}\right|^{2} + 1.4884 \cdot 10^{-11} \left|-1.6514 \cdot 10^{9} + \frac{t}{\mathtt{t\_unit}}\right|^{2} + 3282.8 \left|-0.69813 + \mathtt{lat}\right|^{2} + 3282.8 \left|1.693 + \mathtt{lon}\right|^{2} \right)} \end{align} \]
Coupled System
Next, let's set up a spatial and temporal domain for our simulation, and some input data from GEOS-FP to get wind fields for our advection. We need to use coord_defaults
in this case to get the GEOS-FP data to work correctly, but it doesn't matter what the defaults are. We also set up an outputter to save the results of our simulation, and couple the components we've created so far into a single system.
domain = DomainInfo(
starttime, endtime;
lonrange = deg2rad(-115):deg2rad(1):deg2rad(-68.75),
latrange = deg2rad(25):deg2rad(1):deg2rad(53.7),
levrange = 1:1:15,
dtype = Float64)
geosfp = GEOSFP("0.5x0.625_NA", domain)
geosfp = EarthSciMLBase.copy_with_change(geosfp, discrete_events=[]) # Workaround for bug.
outfile = ("RUNNER_TEMP" ∈ keys(ENV) ? ENV["RUNNER_TEMP"] : tempname()) * "out.nc" # This is just a location to save the output.
output = NetCDFOutputter(outfile, 3600.0)
csys = couple(emis, domain, geosfp, output)
CoupledSystem containing 2 system(s), 0 operator(s), and 1 callback(s).
Advection Operator
Next, we create an AdvectionOperator
to perform advection. We need to specify a time step (300 s in this case), as stencil algorithm to do the advection (current options are l94_stencil
and ppm_stencil
). We also specify zero gradient boundary conditions.
Then, we couple the advection operator to the rest of the system.
adv = AdvectionOperator(300.0, upwind1_stencil, ZeroGradBC())
csys = couple(csys, adv)
CoupledSystem containing 2 system(s), 1 operator(s), and 1 callback(s).
Now, we initialize a ODEProblem
to run our demonstration. We use the Tsit5
time integrator for our emissions system of equations, and a time integration scheme for our advection operator (SSPRK22
in this case). Refer here for the available time integrator choices. We also choose a operator splitting interval of 300 seconds. Then, we run the simulation.
st = SolverStrangSerial(Tsit5(), 300.0)
prob = ODEProblem(csys, st)
@time solve(prob, SSPRK22(), dt=300, save_on=false, save_start=false, save_end=false,
initialize_save=false, progress=true, progress_steps=1)
retcode: Success
Interpolation: 3rd order Hermite
t: Float64[]
u: Vector{Float64}[]
Visualization
Finally, we can visualize the results of our simulation:
ds = NCDataset(outfile, "r")
imax = argmax(reshape(maximum(ds["emissions₊c"][:, :, :, :], dims=(1, 3, 4)), :))
grid = EarthSciMLBase.grid(domain)
anim = @animate for i ∈ 1:size(ds["emissions₊c"])[4]
plot(
heatmap(rad2deg.(grid[1]), rad2deg.(grid[2]),
ds["emissions₊c"][:, :, 1, i]', title="Ground-Level", xlabel="Longitude", ylabel="Latitude"),
heatmap(rad2deg.(grid[1]), grid[3], ds["emissions₊c"][:, imax, :, i]',
title="Vertical Cross-Section (lat=$(round(rad2deg(grid[2][imax]), digits=1)))",
xlabel="Longitude", ylabel="Vertical Level"),
size=(1200, 400)
)
end
gif(anim, fps = 15)
